Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; : e2400568, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38582504

RESUMO

Increasing lithium contents within the lattice of positive electrode materials is projected in pursuit of high-energy-density batteries. However, it intensifies the release of lattice oxygen and subsequent gas evolution during operations. This poses significant challenges for managing internal pressure of batteries, particularly in terms of the management of gas evolution in composite electrodes-an area that remains largely unexplored. Conventional assumptions postulate that the total gas evolution is estimated by multiplying the total particle count by the quantities of gas products from an individual particle. Contrarily, this investigation on overlithiated materials-a system known to release the lattice oxygen-demonstrates that loading densities and inter-particle spacing in electrodes significantly govern gas evolution rates, leading to distinct extents of gas formation despite of an equivalent quantity of released lattice oxygen. Remarkably, this study discoveres that O2 and CO2 evolution rates are proportional to 1O2 concentration by the factor of second and first-order, respectively. This indicates an exceptionally greater change in the evolution rate of O2 compared to CO2 depending on local 1O2 concentration. These insights pave new routes for more sophisticated approaches to manage gas evolution within high-energy-density batteries.

2.
ACS Appl Mater Interfaces ; 13(44): 52202-52214, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34726369

RESUMO

SiOx (x ≈ 1) is one of the most promising anode materials for application in secondary lithium-ion batteries because of its high theoretical capacity. Despite this merit, SiOx has a poor initial Coulombic efficiency, which impedes its widespread use. To overcome this limitation, in this work, we successfully demonstrate a novel synthesis of Mg-doped SiOx via a mass-producible physical vapor deposition method. The solid-state reaction between Mg and SiOx produces Si and electrochemically inert magnesium silicate, thus increasing the initial Coulombic efficiency. The Mg doping concentration determines the phase of the magnesium silicate domains, the size of the Si domains, and the heterogeneity of these two domains. Detailed electron microscopy and synchrotron-based analysis revealed that the nanoscale homogeneity of magnesium silicates driven by cycling significantly affected the lifetime. We found that 8 wt % Mg is the most optimized concentration for enhanced cyclability because MgSiO3, which is the dominant magnesium silicate composition, can be homogeneously mixed with silicon clusters, preventing their aggregation during cycling and suppressing void formation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...